基于深度学习的图像分割方法,主要研究领域是在于语义分割,农兽药残留检测,即根据图片内容,将图像分为多个有含义的部分,对于农产品分类而言有着革命性的意义。全卷积网络FCN是深度学习用于进行图像分割的先驱,以分类模型AlexNet为基础,将其3层全连接层转化为反卷积层进行上采样,从而将输出有特征分类转化为区域特征热力图。
Canny算子相较于Sobel算子更加复杂,能获取更加的边缘且获取到的边缘不会虚化,抗噪性更好,但无法体现边缘的强弱。Canny算法适用于描述农产品的褶皱程度,如红枣中皮皮枣的筛选。文献[4]采用了一种改进的Canny算子用于苹果轮廓的提取。相较于阙值法,边缘检测方法不于提取粗略的轮廓信息,还可以用来提取更加细致的特征,常用于二次分割或配合阙值法使用。
传统提取算法,阙值提取法是图像分割中使用较为广泛的方法,通过阙值的设置,将处于阙值区间内的像素区域归纳为同一区域,从而分割图像。此类算法的缺陷在于只考虑了目标的灰度信息,从而缺少鲁棒性。在这类算法中,如何获取一个合理的阙值是算法成功的关键,手动选取阙值无法具备通用性,易受环境变化的影响,主流的选取阙值的方法有类间方差法和熵阙值分割法。
金标准|数据严谨(多图)-泰州农兽药残留检测由安徽省金标准检测研究院有限公司提供。安徽省金标准检测研究院有限公司在咨询、调研这一领域倾注了诸多的热忱和热情,安徽金标准一直以客户为中心、为客户创造价值的理念、以品质、服务来赢得市场,衷心希望能与社会各界合作,共创成功,共创**。相关业务欢迎垂询,联系人:丁瑶。